sábado, 21 de febrero de 2009
Definición de sensores generadores
Se consideran sensores generadores aquellos que generan una señal eléctrica a partir de la magnitud que midan, sin necesidad de una alimentación eléctrica.
Ofrecen una alternativa para medir muchas de las magnitudes ordinarias, sobre todo temperatura, fuerza y magnitudes afines. Pero, además, dado que se basa en efecto reversible, están relacionados con diversos tipos de accionadores o aplicaciones inversas en general. Es decir, pueden emplear para la generación de acciones no eléctricas a partir de señales eléctricas.
¿Qué es efecto reversible?
Se define como aquel proceso que una vez ocurrido puede ser revertido a su estado inicial, sin producir cambios en el sistema o sus alrededores. En otras palabras el sistema y alrededores retornan a su estado original sin sufrir variaciones. Los procesos reversibles son idealizaciones de procesos verdaderos.
¿Qué es efecto irreversible?
Es aquél que supone la imposibilidad, o la dificultad extrema, de retornar a la situación anterior a la acción que lo produce.
¿Qué es efecto termoeléctrico?
El efecto termoeléctrico en un material relaciona el flujo de calor que lo recorre con la corriente eléctrica que lo atraviesa. Este efecto es la base de las aplicaciones de refrigeración y de generación de electricidad: un material termoeléctrico permite transformar directamente el calor en electricidad, o bien generar frío cuando se le aplica una corriente eléctrica.
El primer efecto termoeléctrico fue descubierto por el físico alemán Thomas Johann Seebeck en 1821. Seebeck se dio cuenta de que una aguja metálica es desviada cuando se la sitúa entre dos conductores de materiales distintos unidos por uno de sus extremos y sometidos a una diferencia de temperatura (véase Efecto Seebeck). Este efecto es de origen eléctrico, ya que al unir dos materiales distintos y someterlos a una diferencia de temperatura aparece una diferencia de potencial. La principal aplicación práctica del efecto Seebeck es la medida de temperatura mediante termopares.Unos años más tarde, en 1834, el físico francés Jean-Charles Peltier descubrió el segundo efecto termoeléctrico: en la unión de dos materiales diferentes sometidos a una corriente eléctrica aparece una diferencia de temperaturas (véase Efecto Peltier).El físico inglés William Thomson (Lord Kelvin) demuestra en 1851 que los efectos Seebeck y Peltier están relacionados: un material sometido a un gradiente de temperatura y recorrido por una corriente eléctrica intercambia calor con el medio exterior. Recíprocamente, un material sometido a un gradiente de temperatura y recorrido por un flujo de calor genera una corriente eléctrica. La diferencia fundamental entre los efectos Seebeck y Peltier considerados por separado y el efecto Thomson es la existencia de este último en un único material, sin necesidad de que exista una unión entre materiales distintos.
2 Tipos:
a) Reversibles: Efecto Peltier.Efecto Thompson.
b) Irreversibles: Efecto Joule.
Defina con texto y con gráficos el Efecto Peltier
El efecto Peltier consiste en el calentamiento o enfriamiento de la unión entre dos metales al pasar una corriente por ella (figura). Ocurre que si se invierte el sentido de la corriente, se invierte también el sentido del flujo de calor, es decir, si una unión antes se calentaba, al cambiar el sentido de la corriente se enfriará. Además, este efecto tiene un comportamiento lineal que viene dado por el coeficiente Peltier, πAB, que representa el calor generado en la unión entre A y B por unidad de corriente que circula de B a A.
Defina con texto y con gráficos el Efecto Thompson
El efecto Thomson consiste en la absorción o liberación de calor por parte de un conductor eléctrico homogéneo, con una distribución de temperaturas no homogénea, por el que circula una corriente [Biel J. G., 1997].
El flujo neto de potencia calorífica por unidad de volumen, en un conductor de resistividad r, con un gradiente longitudinal de temperatura, por el que circula una densidad de corriente J será:
donde s es el coeficiente Thomson. El primer término corresponde al efecto Joule, irreversible, mientras que el segundo expresa el efecto Thomson, reversible. Desarrollando esta expresión para obtener la relación entre el coeficiente Thomson y Seebeck y teniendo en cuenta las ecuaciones que rigen los efectos Peltier y Seebeck, se llega a
Defina con texto y con gráficos el Efecto Seebeck
El efecto Seebeck puede explicarse en términos de la teoría de electrones libres en metales. Según esta aproximación, los electrones en un metal se mueven al azar, sin sufrir el efecto de fuerza neta alguna, al estar rodeados por otros iones en forma simétrica.
Cerca de la superficie del material, empero, la situación es diferente, debido a la rotura de la simetría. Si ahora se colocan dos materiales formando una juntura, la diferencia en densidades electrónicas a ambos lados de la interface se traduce en una fuerza neta sobre los electrones, que tienden a moverse del material con mayor densidad a aquel con menos. Este flujo de electrones induce la aparición de un campo eléctrico y consecuentemente de una diferencia de potencial en la juntura.
Consideremos ahora un circuito formado por dos de estas junturas puestas en serie, en lo que comúnmente se denomina una termocupla. Si la temperatura de las dos junturas que conforman la termocupla es la misma, los campos eléctricos formados en cada juntura tendrán igual módulo, pero signos distintos, por lo que la diferencia de potencial a lo largo de todo el circuito será nula.
Si por otro lado, una de las junturas está a mayor temperatura, los electrones de la juntura más caliente vibrarán más y el campo eléctrico generado en esta juntura será distinto (mayor) al generado en la juntura a menor temperatura.
De esta manera, la diferencia de temperaturas entre las junturas se evidencia como una diferencia de potencial en el circuito.
Tipos de Termopares
En las uniones de termopar interesa tener: resistividad elevada para tener una resistencia alta sin requerir mucha masa, lo cual implicaría alta capacidad calorífica y respuesta lenta; coeficiente de temperatura débil en la resistividad; resistencia a la oxidación a temperaturas altas, pues debe tolerar la atmósfera donde van a estar, y linealidad lo mayor posible.
Para lograr estas propiedades se emplean aleaciones especiales: níquel (90)/cromo (10) -cromel-; cobre (57)/ níquel (43); níquel (94)/aluminio (2)/manganeso (3)/silicio (1) -alumel-; etc. La protección frente al ambiente se logra mediante una capsula, normalmente de acero inoxidable. La velocidad de respuesta y la robustez de la sonda vendrán afectadas por el espesor de dicha vaina. El silicio y el germanio presentan también propiedades termoeléctricas, si bien hasta ahora han encontrado más aplicación como refrigeradores (elementos Peltier) que como temopares de medida. En el cuadro se recogen las características de algunos de los termopares más comunes y su designación de acuerdo con las normas ANSI.
Para medir la temperatura de superficies, hay modelos fabricados con tecnología de capa fina.
Termopares más comunes
Los termopares J son versátiles y de bajo coste. Se pueden emplear en atmósferas oxidantes y reductoras. Se aplican a menudo en hornos de combustión abiertos a la atmósfera. Los termopares K se emplean en atmósferas no reductoras y, en su margen de medida, son mejores que los de tipo E, J y T cuando se trata de medir en atmósfera oxidantes. Los termopares T resisten la corrosión, de modo que se pueden emplear en atmósferas de alta humedad. Los termopares E son los de mayor sensibilidad y resisten la corrosión por debajo de 0°C y las atmósferas oxidantes. Los termopares N resisten la oxidación y ofrecen mejor estabilidad a altas temperaturas. Los termopares con metales nobles (B, R y S) tienen muy alta resistencia a la oxidación y a la corrosión.
Los tipos de termopares los podemos identificar con un código de colores, el cual varia dependiendo del país del fabricante
Construcción de Termopares
Según la aplicación, se dispone de distintos tipos de uniones:
Distintos tipos de uniones de termopar y sus vainas.
a) unión soldada en extremos
b) unión soldada en paralelo
c) hilo trenzado
d) termopar expuesto: respuesta rápida
e) termopar encapsulado: aislamiento eléctrico y ambiental
f) termopar unido a la cubierta: aislamiento ambiental
Distintos tipos de uniones de termopar y sus vainas.
a) unión soldada en extremos
b) unión soldada en paralelo
c) hilo trenzado
d) termopar expuesto: respuesta rápida
e) termopar encapsulado: aislamiento eléctrico y ambiental
f) termopar unido a la cubierta: aislamiento ambiental
Las uniones desnudas se emplean para medidas estáticas, pero son frágiles, o de flujos de gases no corrosivos donde se requiere un tiempo de respuesta rápido. Las uniones aisladas se emplean para medir en ambientes corrosivos donde además interese aislamiento eléctrico del termopar. Éste queda entonces encerrado por la vaina y aislado de ésta por un buen conductor térmico como el aceite, mercurio o polvo metálico. Si se desea respuesta rápida y no hace falta una vaina gruesa. se emplean aislantes minerales como polvo de MgO, Al2 O3 o BeO. Según el grado de compactación del aislante, la respuesta final es más o menos lenta y la temperatura máxima soportada es también distinta. Los termopares aislados también se aplican en medidas a alta presión.
Mediante uniones puestas a masa, se pueden medir temperaturas estáticas o de flujos de gases o líquidos corrosivos y, como la unión está soldada a la vaina protectora, la respuesta térmica es más rápida. Pero si la masa es ruidosa, no sirve y hay que aislar térmicamente el termopar. Además, la mayor masa del sensor implica un mayor error por conducción térmica.
Normas de aplicación practica por los Termopares
La medición de temperaturas mediante termopares, además de las ventajas e inconvenientes expuestos esta sujeta a una serie de leyes verificadas experimentalmente, que simplifican en gran manera el análisis de circuitos con termopares.
• Ley de los circuitos homogéneos
En un circuito de un único metal homogéneo no se puede mantener una corriente termoeléctrica mediante la aplicación exclusiva de calor aunque se varíe la sección transversal del conductor.
En la Figura anterior las temperaturas T3 y T 4 no cambian la energía termo electromotriz (ftem) debida a T1 y T2 en particular, si T1 es igual a T2 y se calientan A ó B no fluye corriente alguna.
Es decir en otras palabras las temperaturas intermedias a las que puede estar sometido cada conductor no altera la ftem. Tampoco ocurre esto debido a una determinada diferencia de temperaturas entre las uniones Sin embargo, esto no significa que si hay distintas temperaturas a lo largo de un circuito se tengan que emplear necesariamente hilos de extensión largos iguales a los del termopar. Para esto se emplean los denominados cables de compensación, los cuales son de metales que, siendo más económicos que los de termopares utilizados frecuentemente en la industria no presentan ftem. significativas
• Ley de los Metales Intermedios
La suma algebraica de las ftem en un circuito compuesto de un número cualesquiera de metales distintos es cero. Si todo el circuito está a una temperatura uniforme.Esto significa que se puede intercalar un instrumento de medida, sin añadir errores, siempre y cuando las nuevas uniones estén a la misma temperatura. El instrumento se puede intercalar en un conductor o en un a unión. Un colorario de estas leyes que si se conoce la relación térmica de dos metales distintos con un tercero. Se puede encontrar la relación entre los dos primeros. Por lo tanto no hace falta calibrar todos los posibles pares de metales para conocer la temperatura correspondiente a 1a ftem. detectada con un par determinado. Basta con conocer su comportamiento con un tercero. Se ha convenido en tomar el Platino como referencia.
• Ley de las temperaturas sucesivas o intermedias
Si dos metales homogéneos producen un ftem. E1 cuando las uniones están a T1 y T2 y una ftem.E2, cuando las uniones están a T2 y T3, la ftem. cuando las uniones estén a T1 y T3 será (E1 + E2).Esto significa, por ejemplo, que la unión de referencia no tiene porque estar a ooc si no que puede usarse otra temperatura de referencia.
En el caso (a) se trata de la conexión serie de varios termopares, constituyendo lo que se denomina una termopila. Es fácil comprobar que aumenta la sensibilidad respecto al caso de un soto termopar. En el caso (b) la conexión es en paralelo, y se detecta la temperatura media si todos los termopares son lineales en el margen de medida y tiene la misma resistencia.
Efecto de la temperatura ambiente en la unión de referencia de los termopares
Un termopar convencional con un tubo de protección metálico se encuentra sometido a una diferencia de temperatura, pues una parte de él está en contacto con el proceso y la otra extremidad en contacto con el ambiente, cada una de ellas a cierta temperatura. Es inevitable, por tanto, que por el conjunto sensor/tubo de protección exista un flujo de calor que parte de la región de mayor temperatura hacia la de menor temperatura. El equilibrio ocurre cuando el flujo de calor recibido por el sensor es igual al que se ha perdido, por lo que en tal situación su temperatura no es necesariamente igual a la temperatura del proceso.
Compensación de la unión de referencia en circuitos de termopares
Para aplicar el efecto Seebeck a la medida de temperaturas, es necesario mantener una de las uniones a una temperatura de referencia. Una solución consiste en disponer la unión de referencia en hielo fundente. Es una solución de gran exactitud y facilidad de montaje, pero es de difícil mantenimiento y coste alto. Se puede mantener también la unión de referencia a una temperatura constante a base de emplear un refrigerador Peltier o un horno termostatado. Pero, en cualquier caso, debe usarse mucho hilo de uno de los dos metales del termopar, y esto encarece la solución.
La solución de la figura anterior permite emplear un hilo de conexión más económico (cobre), si bien sigue siendo una solución cara por la necesidad de mantener una temperatura de referencia constante. Si el margen de variación de la temperatura ambiente es menor que la resolución deseada, puede dejarse la unión de referencia simplemente al aire. En caso contrario, se emplea la denominada compensación electrónica de la unión de referencia. Se procede de la siguiente forma:
Compensación electrónica de la unión de referencia en un circuito de termopares: se miden las variaciones de temperatura ambiente con otro sensor y se suma una tensión igual a la generada en la unión fría.
Consiste en dejar que la unión de referencia sufra las variaciones de la temperatura ambiente, pero éstas se detectan con otro sensor de temperatura, dispuesto en la vecindad de la unión de referencia, y se suma una tensión igual a la generada en la unión fría. La tensión de alimentación del puente debe ser estable y puede ser, por ejemplo, la de una pila de mercurio o la de un generador electrónico de una tensión de e referencia estable. Hay circuitos integrados que miden la temperatura ambiente y ofrecen una tensión de compensación para distintos termopares. El LT1025 se puede aplicar a termopares E, J, D, R, S y T. Los AD594 y AD595 integran, además de la compensación (para termopares J y K, respectivamente), un amplificador de instrumentación.
Explicación de la tabla estándar de termopares
Los termopares comerciales se designan por letras (T, E, J, K, R) que identifican los materiales que contienen y se especifican generalmente por su sensibilidad o coeficiente térmico (MV/ºC).
El tipo E, J, K, y T son termopares de base metálica y se pueden utilizar hasta por encima de 1000°C. El tipo S, R, y B se denominan termopares nobles por poseer platino como elemento básico y se pueden utilizar hasta por encima de 2000°C.
Termopar tipo T (Cu- Constantan)
Termoelemento positivo: Cu 100%
Termoelemento negativo: Cu55%, Ni45%
Rango de utilización: -270ºC a 400ºC
F.E.M. producida: -6,258 mV a 20,872 mV
Características: puede utilizarse en atmósferas inertes, oxidables o reductoras. Gracias a la gran homogeneidad con que el cobre puede ser procesado, se obtiene una buena precisión. En temperaturas superiores a 300ºC, la oxidación del cobre se torna muy intensa, lo que reduce su vida útil y ocasiona desvíos en la curva de respuesta original.
Termoelemento positivo: Cu 100%
Termoelemento negativo: Cu55%, Ni45%
Rango de utilización: -270ºC a 400ºC
F.E.M. producida: -6,258 mV a 20,872 mV
Características: puede utilizarse en atmósferas inertes, oxidables o reductoras. Gracias a la gran homogeneidad con que el cobre puede ser procesado, se obtiene una buena precisión. En temperaturas superiores a 300ºC, la oxidación del cobre se torna muy intensa, lo que reduce su vida útil y ocasiona desvíos en la curva de respuesta original.
Termopar tipo J (Fe- Constantan)
Termoelemento positivo: Fe99,5%
Termolemento negativo: Cu55%, Ni45%
Rango de utilización: -210ºC a 760ºC
F.E.M. producida: -8,096 mV a 42,919 mV
Características: puede utilizarse en atmósferas neutras, oxidables o reductoras. No se recomienda en atmósferas muy húmedas y a bajas temperaturas el termoelemento positivo se vuelve quebradizo. Por encima de 540ºC el hierro se oxida rápidamente. No se recomienda en atmósferas sulfurosas por encima de 500ºC.
Termopar tipo E (Cr- Constantan)
Termoelemento positivo: Ni90%, Cr10%
Termolemento negativo: Cu55%, Ni45%
Rango de utilización: -270ºC a 1000ºC
F.E.M. producida: -9,835 mV a 76,373 mV
Características: Puede utilizarse en atmósferas oxidables, inertes o al vacío, no debe utilizarse en atmósferas alternadamente oxidables y reductoras. Dentro de los termopares a menudo utilizados, es el que posee mayor potencia termoeléctrica, bastante conveniente cuando se desea detectar pequeñas variaciones de temperatura.
Termoelemento positivo: Ni90%, Cr10%
Termolemento negativo: Cu55%, Ni45%
Rango de utilización: -270ºC a 1000ºC
F.E.M. producida: -9,835 mV a 76,373 mV
Características: Puede utilizarse en atmósferas oxidables, inertes o al vacío, no debe utilizarse en atmósferas alternadamente oxidables y reductoras. Dentro de los termopares a menudo utilizados, es el que posee mayor potencia termoeléctrica, bastante conveniente cuando se desea detectar pequeñas variaciones de temperatura.
Termopar tipo K (Cr- Constantan)
Termoelemento positivo: Ni90%, Cr10%
Termoelemento negativo: Ni95%, Mn2%, Si1%, Al 2%
Rango de utilización: -270ºC a 1200ºC
F.E.M. producida: -6,458 mV a 48,838 mV
Características: Puede utilizarse en atmósferas inertes y oxidables. Por su alta resistencia a la oxidación se utiliza en temperaturas superiores a 600ºC y en algunas ocasiones en temperaturas por debajo de 0ºC. No debe utilizarse en atmósferas reductoras y sulfurosas. En temperaturas muy altas y atmósferas pobres en oxigeno ocurre una difusión del cromo, lo que ocasiona grandes desvíos de la curva de respuesta del termopar. Este último efecto se llama “green - root”.
Termopar tipo N (Nicrosil - Nisil)
Termoelemento positivo: Ni84,4%, Cr14,2%, Si1,4%
Termoelemento negativo: Ni95,45% Si4,40%, Mg0,15%
Rango de utilización: -270ºC a 1300ºC
F.E.M. producida: -4,345 mV a 47,513 mV
Características: Este nuevo tipo de termopar es un sustituto del termopar tipo K que posee una resistencia a la oxidación superior a éste. En muchos casos también es un sustituto de los termopares a base de platino a raíz de su temperatura máxima de utilización. Se recomienda para atmósferas oxidables, inertes o pobres en oxígeno, ya que no sufre el efecto “green - root”. No debe exponerse a atmósferas sulfurosas.
Termopar tipo S
Termoelemento positivo: Pt90%, Rh10%
Termoelemento negativo: Pt100%
Rango de utilización: -50ºC a 1768ºC
F.E.M. producida: -0,236 mV a 18,693 mV
Características: Puede utilizarse en atmósferas inertes y oxidables, presenta estabilidad a lo largo del tiempo en temperaturas elevadas, superiores a las de los termopares no constituidos de platino. Sus termoelementos no deben exponerse a atmósferas reductoras o con vapores metálicos. Nunca deben insertarse directamente en tubos de protección metálicos, pero sí en tubos con protección de cerámica. Fabricado con alúmina (Al2O3) de alto contenido de pureza. Para temperaturas superiores a 1500ºC se utilizan tubos de protección de platino. No se recomienda el uso de los termopares de platino en temperaturas abajo de 0ºC debido a la inestabilidad en la respuesta del sensor. En temperaturas por encima de 1400ºC ocurre crecimiento de granulaciones que los dejan quebradizos.
Termopar tipo R
Termoelemento positivo: Pt87%, Rh13%
Termoelemento negativo: Pt100%
Rango de utilización: -50ºC a 1768ºC
F.E.M. producida: -0,226 mV a 21,101 mV
Características: Posee las mismas características del termopar tipo "S", aunque en algunos casos es preferible el tipo "R" por tener una potencia termoeléctrica mayor en un11%.
Termopar tipo B
Termoelemento positivo: Pt70,4%, Rh29,6%
Termoelemento negativo: Pt93,9%, Rh6,1%
Rango de utilización: 0ºC a 1820ºC
F.E.M. producida: 0,000 mV a 13820 mV
Características: Puede ser utilizado en atmósferas oxidables, inertes y por un corto espacio de tiempo en el vacío. Normalmente se utiliza en temperaturas superiores a 1400ºC, por presentar menor difusión de rodios que los tipos S y R. A temperaturas abajo de los 50ºC la fuerza electromotriz termoeléctrica generada es muy pequeña
Sensores piezoeléctricos
El efecto piezoeléctrico consiste en la aparición de una polarización eléctrica en un material al deformarse bajo la acción de un esfuerzo.
Es un efecto reversible, de modo que al aplicar una diferencia de potencial eléctrico a un materialpiezoeléctrico, aparece una deformación. Todos los materiales ferroeléctricos son piezoeléctricos. La propiedad piezoeléctrica está relacionada con la estructura cristalina. Estos fenómenos fueron descubiertos por Jacques y Pierre Curie en 1880.
Aplicaciones
La aplicación del efecto piezoeléctrico está sujeto a una serie de limitaciones.
- La resistencia eléctrica que presentan los materiales piezoeléctricos aunque es muy grande no es infinita. De modo que al aplicar un esfuerzo constante se genera inicialmente una carga que inevitablemente es drenada al cabo de un tiempo. Por lo tanto, no tienen respuesta en continua.
- Estos sensores presentan un pico en la respuesta para la frecuencia de resonancia. Por tanto, espreciso trabajar siempre a frecuencias muy inferiores a la de resonancia mecánica.
- La sensibilidad presenta derivas con la temperatura. Además, por encima de la temperatura de Curie (específica para cada material) desaparece el efecto piezoeléctrico.
- La impedancia de salida de estos sensores es muy alta, por lo que para medir la tensión de salida es preciso utilizar amplificadores con una impedancia de entrada enorme. Son los denominados amplificadores electrométricos o de carga.
Entre las ventajas de los sensores piezoeléctricos destacaremos las siguientes:
- Alta sensibilidad, obtenida muchas veces a bajo coste.
- Alta rigidez mecánica; las deformaciones experimentadas son inferiores a 1μm. Esta alta impedancia mecánica es conveniente para la medida de variables esfuerzo (fuerza, presión, etc)
- Pequeño tamaño y posibilidad de obtener dispositivos con sensibilidad unidireccional. Estas características hacen a este tipo de sensores especialmente adecuados para medir todo tipo de vibraciones. Por ejemplo una aplicación típica es como micrófono. También se utilizan mucho en la detección por ultrasonidos.
Sensores piroeléctricos
El sensor piroeléctrico esta hecho de un material cristalino que genera una pequeña carga eléctrica cuando es expuesto al calor en forma de radiación infrarroja. Cuando la cantidad de radiación es notable el cristal cambia, la cantidad de carga también cambia y puede entonces ser medida con un sensible dispositivo FET construido dentro del sensor. Los elementos del sensor son sensibles a la radiación en un amplio rango entonces se agrega una ventana que actúa como filtro para limitar la radiación de llegada a un rango de 8 a 14 micras donde es mas sensible a la radiación del cuerpo humano.
Sensores fotoeléctricos
Efecto fotovoltaico
El efecto fotoeléctrico interno visto para los fotoconductores, cuando se produce en la zona de una unión p-n permite obtener una tensión eléctrica que es función de la intensidad de la radiación incidente. A la generación de un potencial cuando una radiación ioniza una zona donde hay una barrera de potencial se la denomina efecto fotovoltaico.Al poner en contacto un semiconductor p (dopado con aceptadores) con un semiconductor n (dopado con donadores), debido al movimiento térmico hay electrones que pasan a la zona p y “huecos” que pasan a la zona n, donde se recombinan, respectivamente, con los portadores de carga de signo, como resultado, en una pequeña zona a ambos lados de la superficie de contactos apenas hay portadores libres, y los iones positivos de la zona n y los negativos de la zona p, fijos en sus posiciones en la estructura cristalina, crean un intenso campo eléctrico que se opone a la difusión de más portadores a través de esta barrera de potencial. De este modo se llega a un equilibrio entre la corriente de difusión y la inducida por este campo eléctrico. Si se dispone una conexión externa con cada semiconductor, no se detecta diferencia de potencial interna en la unión queda compensada exactamente por los potenciales de contacto de las conexiones externas con el semiconductor.
Materiales y aplicaciones
Aunque existen formas adicionales a la unión p-n para crear una barrera de potencial, ésta es la más frecuente en sensores. Si la unión p-n está constituida por un mismo semiconductor, se habla de homounión. En caso contrario, se trata de una heteruounión. En la elección del material hay que tener en cuenta la longitud de onda de la radiación a detectar. En la zona visible y del infrarrojo cercano se emplean el silicio y el selenio, el primero en forma de homouniones, mientras que el segundo consta de una capa de selenio (p) sobre óxido de cadmio (n). Al silicio se añade a veces una zona de silicio intrínseco (no dopado) entre las zonas p y n. Esto aumenta la anchura de la zona desierta y repercute en un mayor rendimiento a longitudes de onda largas, así como en una mayor rapidez y menor ruido y corriente de oscuridad. Para otras longitudes de onda se emplean el germanio, antimoniuro de indio, arseniuro de indio, etc.
Suscribirse a:
Entradas (Atom)